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Abstract. We derive low-temperature series (in the variable= exp[-gJ/S?]) for the
spontaneous magnetization, susceptibility, and specific heat of thesdging model on the
square lattice forS = % 2, g and 3. We determine the location of the physical critical
point and non-physical singularities. The number of non-physical singularities closer to the
origin than the physical critical point grows quite rapidly wigh The critical exponents at the
singularities which are closest to the origin and for which we have reasonably accurate estimates
are independent of. Due to the many non-physical singularities, the estimates for the physical
critical point and exponents are poor for higher values ,ahough consistent with universality.

1. Introduction

In an earlier paper [1] we presented low-temperature series for the spontaneous
magnetization, susceptibility and specific heat of the spin-1 Ising model on the square
lattice. In this paper we extend this work to higher spin valugs= g 2, g and 3).

From general theoretical considerations, in particular renormalization group theory, it is
expected that the critical exponents (at the physical singularity) depend only upon the
dimensionality of the lattice and on the symmetry of the ordered state, and thus do not vary
with spin magnitude. Numerical work on the Ising model with> 1 is quite sparse and

little has been published since the mid 1970’s. Low-temperature expansions were obtained
by Fox and Guttmann [2] foS = 1 and S = g for various two- and three-dimensional
lattices. High-temperature expansions have been reported by a number of authors [3-5] who
mainly focused on three-dimensional lattices. Generally the numerical work has confirmed
spin independence. Recently, Matveev and Shrock [6] studied the distribution of zeros
of the partition function of the square lattice Ising model fr= 1, g and 2. While

the physical critical behaviour of the spising model is fairly well understood, little is
known about the non-physical singularities. One major reason for seeking more knowledge
about the complex-temperature behaviour is the hope that this will help in the search for

exact expressions for thermodynamic quantities which have not yet been calculated exactly.
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2. Low-temperature series expansions

The Hamiltonian defining the spifi-lsing model in a homogeneous magnetic figldnay
be written

H=SJZ;<SZ—%)+’;Z(5—@) @)
ij i

where the spin variableg may take thg2S + 1) valueso; = S, S —1,..., —S. The first

sum runs over all nearest-neighbour pairs and the second sum over all sites. The constants
are chosen so the ground stadg £ S Vi) has zero energy. The low-temperature expansion,

as described by Sykes and Gaunt [7], is based on perturbations from the ground state. The
expansion is expressed in terms of the low-temperature vaniaslexp(—g.J/5?) and the

field variablen = exp(—Bh/S), whereg = 1/kT. The expansion of the partition function

in powers ofu may be expressed as

Z = Zuk‘yk(ﬂ) 2
k=0

where W, (i) are polynomials inx. It is more convenient to express the field dependence
in terms of the variable =1 —pu

z=Y xzw. €)
k=0

Using the standard definitions, we find the spontaneous magnetization
10dInz
M@u)=M(@©O)+ =S+ Z1(u)/Zo(u) (4)
B dh |-
sincex = 0 in zero field. For the zero-field susceptibility we find

oM 0 (. 407 Zow)  Ziw)  (Zaw)\?
w3 =4 %) - (z)]
neo Oh oh Zo(w)  Zo(u) Zo(u)

=p/$?|2 5
oh Rt [ (5)

The specific heat series is derived from the zero field partition function (via the internal
energyU = —((3/98) In Zo),

2 2
Cy(u) = o _ ﬂza— InZo = (BJ/S%)? (ud‘i) In Zo(u). (6)

aT ap?

Thus in order to calculate the specific heat, spontaneous magnetization, and susceptibility
one need only calculate the first three moments (with respeg),t&; (u) for &k < 2, of
the partition function. These moments are most efficiently evaluated using the finite lattice
method. The algorithm was described in an earlier paper [1]. For our present purpose it
suffices to note that the infinite lattice partition functiércan be approximated by a product
of partition functionsz,,, on finite (m x n) lattices,

Z~ 1_[ Zm with m <n andm +n <r. )
The weightsz,,, were derived by Enting [8], and are modified in the present algorithm to
utilize the rotational symmetry of the square lattice. The number of terms derived correctly
with the finite lattice method is given by the power of the lowest-order connected graph
not contained in any of the rectangles considered. We usértteelimitedversion of the
algorithm [1] in which the largest rectangles are determined by a cut-off paramgier
m+n < r = 3bmax+ 2. The simplest connected graphs not contained in such rectangles
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are chains of sites all in the § — 1’ state. From (1) we see that such chains give rise to
terms of order & + 1)[S2 — S(S — D]+ (r — D[S? — (S — 1)?] = r(4S — 1) + 1, from

the 2r + 1) interactions between spins in statés and ‘S — 1’ and ther — 1 interactions
between spins both in stat§ — 1'. For a given value obn,x the series expansion is thus
correct to order ®mat+2@S=D _n an earlier paper [1] we reported on thie= 1 case where

we went tobmax = 8 giving a series correct to’8. We have since extended these series to
u® using a more efficient parallel algorithm and a new extrapolation procedure [9]. For
the present work we have calculated the series expansior&:ﬁog, 2, g and 3, deriving
series correct ta'% (hpa = 6) for § = g u'® (bmax = 5) for § = 2, u'?% (byax = 4) for

S =32, andu®®* (bpax = 4) for S = 3.

3. Analysis of the series

The series for the spontaneous magnetization, the susceptibility and the specific heat of the
spin-S Ising model are expected to exhibit critical behaviour of the forms

M) ~ [ [Aj@; — P+ a2y — u) + ajalu; — )™ + -] ®)
J

x@) ~ [ B —w) L+ biaGu; — u) + bjaluj —w)™ + -] ©)
J

Cow) ~ [] €y — ) “IL+ ¢aCuy — w) + cjalu; —w)™ +--]  (10)
J

where the terms involving; represent the leading non-analytic confluent singularity and the
dots- - - represent higher-order analytic and non-analytic confluent terms. By universality,
it is expected that the leading critical exponents at the physical singulagitgqual those

of the spinj Ising model, i.e = §, ¥’ = ;, ande’ = 0 (logarithmic divergence).

We analysed the series using differential approximants (see [10] for a comprehensive
review), which allows one to locate the singularities and estimate the associated critical
exponents fairly accurately, even in cases such as these where there are many singularities.
We find that ordinary Dlog Pdd approximants (first-order homogeneous differential
approximants) yield the most accurate estimates for the physical singularity of the
magnetization series, whereas first- and second-order inhomogeneous approximants are
required in order to analyse the susceptibility and specific heat series. Here it suffices
to say that aK'th-order differential approximant to a functighis formed by matching the
first series coefficients to an inhomogeneous differential equation of the form (see [10] for
details)

K d i
> 0ix) (xdx) f(x)=Px) (11)
i=0

where Q; and P are polynomials of ordeN; and L, respectively. First- and second-order
approximants are denoted bk [No; N1] and [L/No; N1; N2], respectively.

3.1. The physical singularity

In this section we focus on the behaviour at the physical critical point. First we give a
somewhat detailed summary of the analysis of the gph;eries so as to introduce the
various techniques and approximation procedures that we have applied in the analysis.
Generally the estimates for the critical parameters at the physical singularity are quite poor
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because the series have many non-physical singularities closer to the origin and even for
the spin-1 series [1, 9] the convergence of the estimates to the true values of the critical
parameters is very slow. We see no evidence that the critical exponents of giimg

model are not in agreement with the universality hypothesis. Under this assumption, we
have derived improved estimates for the location of the physical critical point and the critical
amplitudes.

In table 1 we have listed the estimates for the physical singularity and critical
exponent for the spontaneous magnetization of the %pising model. The estimates were
obtained from homogeneous differential approximants (which are equivalent to Dlég Pad
approximants). There is a quite substantial spread among the various approximants with
most approximants yielding estimates around> 0.7380 andg ~ 0.130. The estimates
of B, while generally on the large side, are consistent with expectations of universality

1

which would indicate thap = g. If we assume this value to be exact, we see that the

approximants (assuming a linear dependencg oh u;) would lead tou, ~ 0.737 75.

Table 1. Estimates foruc and g8 for the sping Ising model as obtained fromN], M]
homogeneous first-order differential approximants.

[N -1, N] [N, N] [N+1,N]

N Uc ﬂ Uc ﬂ Uc ﬂ

40 0.738148 0.1306 0.738167 0.1308 0.738049 0.1295
41 0.738124 0.1303 0.738020 0.1291 0.738081 0.1298
42 0.737908 0.1275 0.737948 0.1281 0.737125 0.1085
43 0.737918 0.1277 0.738046 0.1294 0.738099 0.1300
44 0.738128 0.1303 0.738105 0.1301 0.738098 0.1300
45 0.738123 0.1303 0.738059 0.1296 0.740267 0.1038
46 0.737958 0.1283 0.738135 0.1304 0.738140 0.1304
47 0.738140 0.1304 0.738135 0.1304 0.738331 0.1317
48 0.736928 0.1047 0.737705 0.1242 0.737673 0.1236
49 0.737676 0.1236 0.737700 0.1241 0.737867 0.1271
50 0.738187 0.1313 0.737810 0.1261

In tables 2 and 3 we have listed estimates for the position of the physical singularities
and critical exponents of the series for susceptibility and specific heat of théZ spiodel.
Since the first non-zero term in these seriesSisthe estimates were obtained by analysing
the seriesy (u)/u® and C,(u)/u®. The estimates were obtained by averaging first-order
[L/N; M] and second-orderl|/N; M; M] inhomogeneous differential approximants with
I[N — M| < 1. For each ordeL. of the inhomogeneous polynomial we averaged over most
approximants to the series, which as a minimum used all the series terms up to the last 15
or so. Some approximants were excluded from the averages because the estimates were
obviously spurious. Examples include the [47,48] and [46, 45] approximants in table 1.
The error quoted for these estimates reflects the spread (basically one standard deviation)
among the approximants. Note that these error bounds sinatlde viewed as a measure
of the true error as they cannot include possible systematic sources of error. While the
estimates are not very good, we see that the estimateg. fare consistent with the value
uc ~ 0.73775 obtained from the magnetization series by demanﬂiﬂg% and that the
exponent estimates are consistent with universality expectatioplS:ef;1 ando’ = 0.

As for the critical exponents, it is obvious that the behaviouratexcept forS = %
and 1) is not represented very well by the series. This discrepancy, which becomes more
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Table 2. Estimates fomc andy’ for the sping Ising model as obtained from inhomogeneous
first- and second-order differential approximants (DA).

First-order DA Second-order DA

/ ’
Uc 14 Uc Y

0.73787(40) 1.848(63) 0.73802(37) 1.864(58)
0.73808(31) 1.882(52) 0.73810(26) 1.868(49)
0.73800(19) 1.864(34) 0.73818(20) 1.882(39)
0.73804(23) 1.874(43) 0.73804(33) 1.848(72)
0.73792(48) 1.82(10)  0.73805(38) 1.863(69)
0.73803(46) 1.895(65) 0.73808(25) 1.852(69)
0.73787(53) 1.839(99) 0.73803(53) 1.82(18)

0.73823(18) 1.50(98)  0.73792(51) 1.80(12)

0.73774(64) 1.76(20)  0.73808(31) 1.861(62)

oOo~NO O~ WNPEO ~

Table 3. Estimates fomu. anda’ for the sping Ising model as obtained from inhomogeneous
first- and second-order differential approximants (DA).

First-order DA Second-order DA

Uc o Uc o

0.74062(88) 0.343(16) 0.7393(18) 0.17(25)
0.74030(88) 0.320(80) 0.7382(15) 0.20(80)
0.7397(20)  0.24(32)  0.7389(18)  0.12(20)
0.7401(10)  0.32(10)  0.7384(16) 0.07(23)
0.7370(28)  0.06(71)  0.7381(17) 0.03(31)
0.7381(21)  0.04(38)  0.7378(21) 0.05(48)
0.7373(25)  0.24(61)  0.7388(29) 0.07(53)
0.7357(24)  0.21(64)  0.7381(28) 0.33(90)
0.7356(24)  0.25(68)  0.7386(25) 0.02(66)

o~NO O~ WNPEO ~

pronounced asS increases, is hardly surprising given that the number of non-physical
singularities within the physical disc increases rapidly with spin magnitude (see the following
section for details). The quite complicated singularity structure of the series simply tends
to obscure the behaviour at the physical singularity. This problem is possibly further
aggravated by the presence of confluent terms. The only series which yields reasonably
accurate estimates is the magnetization from which we estighate0.13%4), 0.138(5),

and 0.132(2) forS = 2, g’ and 3, respectively. Again, the quoted errors are merely a
measure of the spread among the approximants rather than the true error. The differential
approximant analysis of the highér series for the susceptibility and specific heat yields
little of value. Estimates for the critical exponept fluctuate wildly and lie somewhere
between 0.5 and 2 while generally favouring values beiovSimiIarly, estimates fow’ lie
between—0.5 and 1. So while no sensible estimates can be obtained there is no evidence
to suggest that the exponents are not consistent with universality.

While this situation is somewhat disappointing it is hardly surprising in light of the
behaviour of the spin-1 series, where our earlier analysis showed a very slow convergence
of estimates towards the true values of the critical parameters [1, 9]. Although the order to
which the higher spirs series are correct exceeds that of the spin-1 series, this is really
just a consequence of the definition of the expansion variabléVe would expect the
accuracy of estimates to depend not so much on the actual order of the series as much
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as on the maximal cut-off given bynax. In essence, the accuracy is determined by the
number of distinct graphs, consisting of spins flipped from the ground state (irrespective of
the actual value of the spins), that one has summed over. One should therefore not expect
more accurate estimates from the higher spiseries than those one could have obtained
by truncating the spin-1 series at an order determined by the associated valg. of

One may hope to obtain improved estimates ifgrby raising the relevant series to
the power YA, where i is the expected leading critical exponent, and look for simple
zeros and poles of the resulting series. This procedure of biasing works quite well for the
magnetization and susceptibility series (it obviously cannot be used for the specific heat
series). It is well known that the analysis of series exhibiting a logarithmic divergence,
as we expect of the specific heat series, is particularly difficult. A fairly simple way of
circumventing these problems is to study the derivative of the specific hertCg(1). The
series for this quantity should have a simple poleigta situation much more amenable
to analysis by either differential approximants or even just ordinaryé Rgaproximants.
This approach does indeed confirm the logarithmic divergeneg,ahough the evidence
becomes rather circumstantial for higher valuesSofThe estimates fon. derived in this
fashion are tabulated in table 4 and were obtained by averaging ordiNaryK, N] Pack
approximants K = 0, 1) with 2N + K + 15 not less than the order of the series. The
error quoted for these estimates again merely reflects the spread among the approximants.

Table 4. Biased estimates for the physical singularity.

S  Magnetization  Susceptibility  Specific heat
3 0.73774(2) 0.7372(2) 0.7379(5)

2 0.8293(2) 0.8288(2) 0.833(3)

5 0.8795(3) 0.881(3) 0.882(2)

3 0.9107(4) 0.914(1) 0.905(4)

It is often possible to find a transformation of variable which will map the non-physical
singularities outside the transformed physical disc. One such transformation is given by
u = x/(2 — x). Although the series in the transformed variable have radii of convergence
determined by the physical singularity, this transformation turns out to be of little use and
does not allow us to obtain better estimates for the critical parameters. This is probably
because there are still singularities close to the physical disc and because such singularity-
moving transformations may introduce long-period oscillations [10].

We have calculated the critical amplitudes using two different methods, both of
which are very simple and easy to implement. In the first method, we note that if
fw) ~ A(l—u/uc)~*, then it follows that(uc — u) f/*|,—,, ~ AY*us. So we simply form
the series fog (1) = (uc —u) f¥* and evaluate P&dapproximants to this seriesat The
result is justAY*u.. This procedure works well for the magnetization and susceptibility
series (it obviously cannot be used to analyse the specific heat series). For the specific heat
series two different approaches have been used. In the first approach we use the ‘trick’
applied previously and look at the derivative of the specific heat series for which the above
method should work withh = 1. In table 5 we have listed the estimates for the critical
amplitudes obtained in this fashion. As usual, estimates for any given valug wére
obtained by averaging over many higher-order approximants, and the error estimates in
table 5 reflect both the spread among the various approximants as well as the dependence
on uc. In the second approach we start frofiiw) ~ AlIn(1 — u/uc) and form the series
g(u) = exp(— f(u)) which has a singularity at. with exponentA. One virtue of this
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approach is that no prior estimate mf is needed. However, the spread among estimates
from different approximants is very substantial although consistent with table 5. Biasing
the estimates at. also confirms the value of the amplitude, although generally the spread
is larger than for the first approach. For the spin-3 susceptibility and specific heat series we
could not obtain reliable amplitude estimates since the spread tended to be larger than the
average value and the poor estimatetpleads to even greater errors.

Table 5. Estimates for the amplitudes at the physical singularity.

S  Magnetization  Susceptibility — Specific heat
g 1.875(5) 0.019(3) 52(2)

2 257(2) 0.0088(5) 110(5)

5 3.33(3) 0.006(2) 190(10)

3 4.10(5) — —

In the second method, proposed by Liu and Fisher [11], one starts ffam ~
Aw)(A—u/ue)™ + B(u) and then forms the auxiliary functiof(u) = (1 —u/uc)* f(u) ~
A(u) + B(u)(1 — u/uc)*. Thus the required amplitude is now thackgroundterm in
g(u), which can be obtained from inhomogeneous differential approximants [10]. This
method can also be used to study the specific heat series. One now startg (frprmy
Aw)In(1—u/uc)+ B(u) and then looks at the auxiliary functi@ru) = f(u)/In(1—u/uc).

As before, the amplitude can be obtained as the background tegtu)n This analysis
yields amplitude estimates consistent with those in table 5, but with larger error bars.

In table 6 we have listed our final estimates for the physical singularities and the
associated exponents and amplitudes. For the estimates of the position of the physical
singularities we have placed most weight on the biased analysis of the magnetization series.
In the spin% caseu. and the exponents’ andg and the amplituded . and A, are known
exactly due to the calculation of the free energy by Onsager [12] and the magnetization by
Yang [13]. The susceptibility amplitudd, is known to very high precision [14]. The
spin-1 estimates are from [9].

Table 6. The physical singularities and associated exponents and amplitudes.

S uc B Ay Y Ay o Ac

1 3-2,2 3 1.138789 0.584850 0 5.406 58

1 05540653(5) 0.12507(3) 1.2083(2)  1.750(1)  0.0617(1)  0.0005(10)  22.3(5)
3 0.73775(15) 0.128(3) 1.875(15)  1.85(15)  0.019(5)  0.0(3) 52(4)

2 0.8293(3) 0.139(4) 2.57(4) — 0.009(1)  — 110(10)

5 0.8795(5) 0.138(5) 3.33(6) — 0.006(2)  — 190(20)

3 0.911(1) 0.132(2) 4.1(1) — — — —

3.2. Non-physical singularities

Except forS = % the series have a radius of covergence smaller gdQalue to singularities

in the complexu-plane closer to the origin than the physical critical point. Since all the
coefficients in the expansion are real, complex singularities always come in pairs. The
number of non-physical singularities appears to increase quite dramaticallySyitius
making it exceedingly hard to locate them accurately for l&fge
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Table 7. Non-physical singularitiea; and associated exponents of the spigeries.

Us lusl/uc B Y’ o

Spin-1
1 —0.598 550(5) 1.08 0.1248(3)  1.750(5) 0.005(10)
1 —0.301939%5) +£0.378773%5)i 0.87 —0.1690(2) 1.1692(2) 1.1693(3)
Spin-3
3 0.63(1) =+ 0.45(1)i 1.05 —1.8(5) 2.7(5) 2.4(6)
1 0.094 772) + 0.641 175)i 0.88 —0.174(5) 1.185(5)  1.185(1)
2 —0.065405) + 0.71134)i 0.97 —0.18(3) 1.21(2) 1.22(3)
1 —0.529242) + 0.337 972)i 0.85 —0.177(5) 1.184(5)  1.188(5)
Spin-2
2 —0.842(5) 1.02 0.130(4)  1.2(5) 0.3(4)
1 0.37672) + 0.6401(1)i 0.90 -0.16(3) 1.19(1) 1.19(3)
2 0.302(6) + 0.727(8) 0.95 — 1.3(4) 1.2(3)
4 0.21515) + 0.80515)i 1.00 — — —
1 —0.225612) + 0.682 474)i 0.87 —0.16(2) 1.194(6)  1.192(6)
2 —0.394(5) + 0.700(6)i 0.97 — 1.8(6) 1.6(4)
1 —0.648904) + 0.286 964) 0.86 —0.180(5) 1.197(6)  1.194(6)
3 —0.685(15) + 0.48515)i 1.01 — 2.3(5) 1.4(3)
Spin-3
1 0.5501(3) + 0.58422)i 091  -0.4(1) 1.19(2) 1.19(4)
3 0.522(5) £+ 0.64510)i 0.94 —-1.2(4)
1 0.06122) + 0.77592)i 0.88 —0.2(1) 1.20(3) 1.19(2)
3 —0.03(1) & 0.83(D)i 0.94 — — —
1 —0.4227(1) + 0.640Q )i 0.87 —0.20(5) 1.185(15)  1.21(3)
3 —0.575(5) £ 0.61(2)i 0.95 — — —
3 —0.665(15) & 0.53(1)i 0.97 — — —
1 —0.72132) + 0.245 9515)i 0.87 —0.175(25) 1.20(2) 1.20(2)
4 —0.745(15) & 0.39(2)i 0.96 — — —
Spin-3

—0.92(1) 1.01 — — —
1 0.66084) + 0.52325)i 0.93 — 1.20(3) 1.20(3)
3 0.645(15) & 0.595(15)i 0.96 —1.4(5) 2.0(5) 2.0(5)
1 0.27293) + 0.77304)i 0.90 — 1.20(4) 1.19(4)
4 0.220(15) + 0.840(15)i 0.95 — 1.6(4) 1.6(4)
1 —0.1686(1) & 0.79021)i 0.89 —-0.19(3) 1.20(2) 1.20(2)
2 —0.275(5) & 0.825(5)i 0.95 — 1.2(3) 1.2(3)
1 —0.549 555) + 0.583 513)i 0.88  —0.20(4) 1.196(6)  1.197(5)
2 —0.68(1) & 0.54(L)i 0.95 — 1.1(4) 1.0(4)
1 —0.769 2510) + 0.214 305)i 0.88  —0.185(25) 1.205(15) 1.205(15)

In order to locate the non-physical singularities in a systematic fashion we used the
following procedure. We calculate alLfN; M] inhomogeneous first-order differential
approximants with N — M| < 1 using all, or almost all, series terms for ¥0L < 16.

(We discard no more than the last 15-20 terms.) Each approximant yi¢lg®ssible
singularities and associated exponents from Miezeros of Q; (many of these are, of
course, not actual singularities of the series but merely spurious zer@g)of Next we

sort these ‘singularities’ into equivalence classes by the criterion that they lie at most a
distance 2% apart. An equivalence class is accepted as a singularity if it contains more
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s=3% S=1 4 5=

S

Figure 1. The distribution of singularities in the complexplane. In all cases the circle has
radiusuc.

al
o
AR
N

than N, approximants §, can be adjusted but we typically use a value aroémﬂf the

total number of approximants), and an estimate for the singularity and exponent is obtained
by averaging over the approximants (the spread among the approximants is also calculated).
This calculation is then repeated for— 1, k — 2, ... until a minimal value of roughly

five. To avoid outputting well converged singularities at every level, once an equivalence
class has been accepted, the approximants which are members of it are removed, and the
subsequent analysis is carried out on the remaining data only. This procedure is applied to
each series in turn producing tables of possible singularities. Next we look at these tables
in order to identify the true singularities.

In table 7 we have listed the non-physical singularities that we believe to have been
identified with some degree of certainty and accuracy. For higher spin values several of
these are marred by large error bounds and it is quite possible that we have not been able
to locate all non-physical singularities of the series, particularly Sfoe g and 3. First
we accepted any singularity which appeared in all the series at a reasonably early level,
sayk > 10. These singularities are marked 1 in table 7 and all of them are undoubtedly
true singularities. Singularities which appear fok 10 are a lot more tricky to deal with.
Generally we also expect that a singularity which appearskfer 8 or 9 (or higher) in
all series and for the majority of values @éfis a true singularity of the series (these are
marked 2 in table 7). However, we often find that some singularities appear=£08 or
higher in some series but at lower valueskoéll the way down to 5 in other series, and
it is not easy to determine which ones are true singularities and which ones are not. Those
marked 3 appear in all series and for all valued.ofvhile those marked 4 appear in some
series for allL but not neccesarily for alL in other series.

The distribution of singularities is shown in figure 1. A remarkable feature of the
singularity distribution is its regularity. AS increases the complex singularities move
closer to the perimeter of the physical disc and the distance between the various singularities
become more uniform. In the limif — oo it thus seems likely that the singularities will
converge onto the unit circle.

We find the very old conjecture by Fox and Guttmann [2] that the number of singularities
inside the physical disc equalsS — 2, wheregq is the coordination number of the lattice
(¢ = 4 for the square lattice), to be invalid fé6r> 1. Recently, Matveev and Shrock [6]
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studied the distribution of zeros of the partition function of the square lattice Ising model
for § =1, g and 2. They conjectured that all divergences of the magnetization occur
at endpoints of arcs of zeros protruding into the ferromagnetic phase and that there are
4[S?] — 2 such arcs fos > 1, where k] denotes the integer part af Our analysis seems

to confirm these conjectures for the magnetization series up #02. In particular, we

find evidence of singularities close to the endpoints located by Matveev and Shrock [6] for
these spin values.

The estimate fory’ at the singularityu_. = —1 of the spin% susceptibility and
the estimates for the spin-1 series are based on the low-temperature series we published
elsewhere [1,9]. The estimate for of the spin% case is consistent with the exact value
y = g also reported by Matveev and Shrock [15].

From table 7 we observe that the exponents at the singularities in the complex plane
which are well converged (those marked 1) appear to be independéntlofthe case of
integer spin it appears that the exponents associated with the singularity on the negative
u-axis equal those at.. While the exponents are independent$fnote that they do
depend on the lattice structure [15], so a much weaker version of universality holds at the
non-physical singularities. In all these cases we observe that the Rushbrooke inequality
[16],

o +28+y =22 (12)

is satisfied, and it does indeed seem quite possible that the exponents satisfy the equality in
equation (12). At the remaining singularities the errors on the exponent estimates are too
large to make any such assertion.

E-mail or www retrieval of series

The low-temperature series for the sgindsing model can be obtained via e-
mail by sending a request to iwan@maths.mu.oz.au or via the worldwide web on
http://www.maths.mu.oz.au/"iwan/ by following the instructions.
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