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Low-temperature series expansions for the square lattice
Ising model with spin S > 1
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† Department of Mathematics, The University of Melbourne, Parkville, Victoria 3052, Australia
‡ CSIRO, Division of Atmospheric Research, Mordialloc, Victoria 3195, Australia

Received 19 February 1996

Abstract. We derive low-temperature series (in the variableu = exp[−βJ/S2]) for the
spontaneous magnetization, susceptibility, and specific heat of the spin-S Ising model on the
square lattice forS = 3

2 , 2, 5
2 , and 3. We determine the location of the physical critical

point and non-physical singularities. The number of non-physical singularities closer to the
origin than the physical critical point grows quite rapidly withS. The critical exponents at the
singularities which are closest to the origin and for which we have reasonably accurate estimates
are independent ofS. Due to the many non-physical singularities, the estimates for the physical
critical point and exponents are poor for higher values ofS, though consistent with universality.

1. Introduction

In an earlier paper [1] we presented low-temperature series for the spontaneous
magnetization, susceptibility and specific heat of the spin-1 Ising model on the square
lattice. In this paper we extend this work to higher spin values (S = 3

2, 2, 5
2, and 3).

From general theoretical considerations, in particular renormalization group theory, it is
expected that the critical exponents (at the physical singularity) depend only upon the
dimensionality of the lattice and on the symmetry of the ordered state, and thus do not vary
with spin magnitude. Numerical work on the Ising model withS > 1 is quite sparse and
little has been published since the mid 1970’s. Low-temperature expansions were obtained
by Fox and Guttmann [2] forS = 1 andS = 3

2 for various two- and three-dimensional
lattices. High-temperature expansions have been reported by a number of authors [3–5] who
mainly focused on three-dimensional lattices. Generally the numerical work has confirmed
spin independence. Recently, Matveev and Shrock [6] studied the distribution of zeros
of the partition function of the square lattice Ising model forS = 1, 3

2, and 2. While
the physical critical behaviour of the spin-S Ising model is fairly well understood, little is
known about the non-physical singularities. One major reason for seeking more knowledge
about the complex-temperature behaviour is the hope that this will help in the search for
exact expressions for thermodynamic quantities which have not yet been calculated exactly.
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2. Low-temperature series expansions

The Hamiltonian defining the spin-S Ising model in a homogeneous magnetic fieldh may
be written

H = J

S2

∑
〈ij〉

(S2 − σiσj ) + h

S

∑
i

(S − σi) (1)

where the spin variablesσi may take the(2S + 1) valuesσi = S, S − 1, . . . ,−S. The first
sum runs over all nearest-neighbour pairs and the second sum over all sites. The constants
are chosen so the ground state (σi = S ∀i) has zero energy. The low-temperature expansion,
as described by Sykes and Gaunt [7], is based on perturbations from the ground state. The
expansion is expressed in terms of the low-temperature variableu = exp(−βJ/S2) and the
field variableµ = exp(−βh/S), whereβ = 1/kT . The expansion of the partition function
in powers ofu may be expressed as

Z =
∞∑

k=0

uk9k(µ) (2)

where9k(µ) are polynomials inµ. It is more convenient to express the field dependence
in terms of the variablex = 1 − µ

Z =
∞∑

k=0

xkZk(u). (3)

Using the standard definitions, we find the spontaneous magnetization

M(u) = M(0) + 1

β

∂ ln Z

∂h

∣∣∣∣
h=0

= S + Z1(u)/Z0(u) (4)

sincex = 0 in zero field. For the zero-field susceptibility we find

χ(u) = ∂M

∂h

∣∣∣∣
h=0

= ∂

∂h

(
Z−1 ∂Z

∂h

)∣∣∣∣
h=0

= β/S2

[
2
Z2(u)

Z0(u)
− Z1(u)

Z0(u)
−

(
Z1(u)

Z0(u)

)2]
. (5)

The specific heat series is derived from the zero field partition function (via the internal
energyU = −((∂/∂β) ln Z0),

Cv(u) = ∂U

∂T
= β2 ∂2

∂β2
ln Z0 = (βJ/S2)2

(
u

d

du

)2

ln Z0(u). (6)

Thus in order to calculate the specific heat, spontaneous magnetization, and susceptibility
one need only calculate the first three moments (with respect tox), Zk(u) for k 6 2, of
the partition function. These moments are most efficiently evaluated using the finite lattice
method. The algorithm was described in an earlier paper [1]. For our present purpose it
suffices to note that the infinite lattice partition functionZ can be approximated by a product
of partition functionsZmn on finite (m × n) lattices,

Z ≈
∏
m,n

Zamn

mn with m 6 n andm + n 6 r. (7)

The weightsamn were derived by Enting [8], and are modified in the present algorithm to
utilize the rotational symmetry of the square lattice. The number of terms derived correctly
with the finite lattice method is given by the power of the lowest-order connected graph
not contained in any of the rectangles considered. We use thetime-limitedversion of the
algorithm [1] in which the largest rectangles are determined by a cut-off parameterbmax,
m + n 6 r = 3bmax + 2. The simplest connected graphs not contained in such rectangles
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are chains ofr sites all in the ‘S − 1’ state. From (1) we see that such chains give rise to
terms of order 2(r + 1)[S2 − S(S − 1)] + (r − 1)[S2 − (S − 1)2] = r(4S − 1) + 1, from
the 2(r + 1) interactions between spins in states ‘S’ and ‘S − 1’ and ther − 1 interactions
between spins both in state ‘S − 1’. For a given value ofbmax the series expansion is thus
correct to orderu(3bmax+2)(4S−1). In an earlier paper [1] we reported on theS = 1 case where
we went tobmax = 8 giving a series correct tou78. We have since extended these series to
u113 using a more efficient parallel algorithm and a new extrapolation procedure [9]. For
the present work we have calculated the series expansions forS = 3

2, 2, 5
2 and 3, deriving

series correct tou100 (bmax = 6) for S = 3
2, u119 (bmax = 5) for S = 2, u126 (bmax = 4) for

S = 5
2, andu154 (bmax = 4) for S = 3.

3. Analysis of the series

The series for the spontaneous magnetization, the susceptibility and the specific heat of the
spin-S Ising model are expected to exhibit critical behaviour of the forms

M(u) ∼
∏
j

Aj (uj − u)βj [1 + aj,1(uj − u) + aj,1(uj − u)1j + · · ·] (8)

χ(u) ∼
∏
j

Bj (uj − u)−γ ′
j [1 + bj,1(uj − u) + bj,1(uj − u)1j + · · ·] (9)

Cv(u) ∼
∏
j

Cj (uj − u)−α′
j [1 + cj,1(uj − u) + cj,1(uj − u)1j + · · ·] (10)

where the terms involving1j represent the leading non-analytic confluent singularity and the
dots · · · represent higher-order analytic and non-analytic confluent terms. By universality,
it is expected that the leading critical exponents at the physical singularity,uc, equal those
of the spin-12 Ising model, i.e.β = 1

8, γ ′ = 7
4, andα′ = 0 (logarithmic divergence).

We analysed the series using differential approximants (see [10] for a comprehensive
review), which allows one to locate the singularities and estimate the associated critical
exponents fairly accurately, even in cases such as these where there are many singularities.
We find that ordinary Dlog Padé approximants (first-order homogeneous differential
approximants) yield the most accurate estimates for the physical singularity of the
magnetization series, whereas first- and second-order inhomogeneous approximants are
required in order to analyse the susceptibility and specific heat series. Here it suffices
to say that aKth-order differential approximant to a functionf is formed by matching the
first series coefficients to an inhomogeneous differential equation of the form (see [10] for
details)

K∑
i=0

Qi(x)

(
x

d

dx

)i

f (x) = P(x) (11)

whereQi andP are polynomials of orderNi andL, respectively. First- and second-order
approximants are denoted by [L/N0; N1] and [L/N0; N1; N2], respectively.

3.1. The physical singularity

In this section we focus on the behaviour at the physical critical point. First we give a
somewhat detailed summary of the analysis of the spin-3

2 series so as to introduce the
various techniques and approximation procedures that we have applied in the analysis.
Generally the estimates for the critical parameters at the physical singularity are quite poor
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because the series have many non-physical singularities closer to the origin and even for
the spin-1 series [1, 9] the convergence of the estimates to the true values of the critical
parameters is very slow. We see no evidence that the critical exponents of spin-S Ising
model are not in agreement with the universality hypothesis. Under this assumption, we
have derived improved estimates for the location of the physical critical point and the critical
amplitudes.

In table 1 we have listed the estimates for the physical singularity and critical
exponent for the spontaneous magnetization of the spin-3

2 Ising model. The estimates were
obtained from homogeneous differential approximants (which are equivalent to Dlog Padé
approximants). There is a quite substantial spread among the various approximants with
most approximants yielding estimates arounduc ' 0.7380 andβ ' 0.130. The estimates
of β, while generally on the large side, are consistent with expectations of universality
which would indicate thatβ = 1

8. If we assume this value to be exact, we see that the
approximants (assuming a linear dependence ofβ on uc) would lead touc ' 0.737 75.

Table 1. Estimates foruc and β for the spin-32 Ising model as obtained from [N, M]
homogeneous first-order differential approximants.

[N − 1, N ] [N, N ] [N + 1, N ]

N uc β uc β uc β

40 0.738 148 0.1306 0.738 167 0.1308 0.738 049 0.1295
41 0.738 124 0.1303 0.738 020 0.1291 0.738 081 0.1298
42 0.737 908 0.1275 0.737 948 0.1281 0.737 125 0.1085
43 0.737 918 0.1277 0.738 046 0.1294 0.738 099 0.1300
44 0.738 128 0.1303 0.738 105 0.1301 0.738 098 0.1300
45 0.738 123 0.1303 0.738 059 0.1296 0.740 267 0.1038
46 0.737 958 0.1283 0.738 135 0.1304 0.738 140 0.1304
47 0.738 140 0.1304 0.738 135 0.1304 0.738 331 0.1317
48 0.736 928 0.1047 0.737 705 0.1242 0.737 673 0.1236
49 0.737 676 0.1236 0.737 700 0.1241 0.737 867 0.1271
50 0.738 187 0.1313 0.737 810 0.1261

In tables 2 and 3 we have listed estimates for the position of the physical singularities
and critical exponents of the series for susceptibility and specific heat of the spin-3

2 model.
Since the first non-zero term in these series isu6, the estimates were obtained by analysing
the seriesχ(u)/u6 and Cv(u)/u6. The estimates were obtained by averaging first-order
[L/N; M] and second-order [L/N; M; M] inhomogeneous differential approximants with
|N − M| 6 1. For each orderL of the inhomogeneous polynomial we averaged over most
approximants to the series, which as a minimum used all the series terms up to the last 15
or so. Some approximants were excluded from the averages because the estimates were
obviously spurious. Examples include the [47, 48] and [46, 45] approximants in table 1.
The error quoted for these estimates reflects the spread (basically one standard deviation)
among the approximants. Note that these error bounds shouldnot be viewed as a measure
of the true error as they cannot include possible systematic sources of error. While the
estimates are not very good, we see that the estimates foruc are consistent with the value
uc ' 0.737 75 obtained from the magnetization series by demandingβ = 1

8 and that the
exponent estimates are consistent with universality expectations ofγ ′ = 7

4 andα′ = 0.
As for the critical exponents, it is obvious that the behaviour atuc (except forS = 1

2
and 1) is not represented very well by the series. This discrepancy, which becomes more
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Table 2. Estimates foruc andγ ′ for the spin-32 Ising model as obtained from inhomogeneous
first- and second-order differential approximants (DA).

First-order DA Second-order DA

L uc γ ′ uc γ ′

0 0.737 87(40) 1.848(63) 0.738 02(37) 1.864(58)
1 0.738 08(31) 1.882(52) 0.738 10(26) 1.868(49)
2 0.738 00(19) 1.864(34) 0.738 18(20) 1.882(39)
3 0.738 04(23) 1.874(43) 0.738 04(33) 1.848(72)
4 0.737 92(48) 1.82(10) 0.738 05(38) 1.863(69)
5 0.738 03(46) 1.895(65) 0.738 08(25) 1.852(69)
6 0.737 87(53) 1.839(99) 0.738 03(53) 1.82(18)
7 0.738 23(18) 1.50(98) 0.737 92(51) 1.80(12)
8 0.737 74(64) 1.76(20) 0.738 08(31) 1.861(62)

Table 3. Estimates foruc andα′ for the spin-32 Ising model as obtained from inhomogeneous
first- and second-order differential approximants (DA).

First-order DA Second-order DA

L uc α′ uc α′

0 0.740 62(88) 0.343(16) 0.7393(18) 0.17(25)
1 0.740 30(88) 0.320(80) 0.7382(15) 0.20(80)
2 0.7397(20) 0.24(32) 0.7389(18) 0.12(20)
3 0.7401(10) 0.32(10) 0.7384(16) 0.07(23)
4 0.7370(28) 0.06(71) 0.7381(17) 0.03(31)
5 0.7381(21) 0.04(38) 0.7378(21) 0.05(48)
6 0.7373(25) 0.24(61) 0.7388(29) 0.07(53)
7 0.7357(24) 0.21(64) 0.7381(28) 0.33(90)
8 0.7356(24) 0.25(68) 0.7386(25) 0.02(66)

pronounced asS increases, is hardly surprising given that the number of non-physical
singularities within the physical disc increases rapidly with spin magnitude (see the following
section for details). The quite complicated singularity structure of the series simply tends
to obscure the behaviour at the physical singularity. This problem is possibly further
aggravated by the presence of confluent terms. The only series which yields reasonably
accurate estimates is the magnetization from which we estimateβ = 0.139(4), 0.138(5),
and 0.132(2) forS = 2, 5

2, and 3, respectively. Again, the quoted errors are merely a
measure of the spread among the approximants rather than the true error. The differential
approximant analysis of the higherS series for the susceptibility and specific heat yields
little of value. Estimates for the critical exponentγ ′ fluctuate wildly and lie somewhere
between 0.5 and 2 while generally favouring values below7

4. Similarly, estimates forα′ lie
between−0.5 and 1. So while no sensible estimates can be obtained there is no evidence
to suggest that the exponents are not consistent with universality.

While this situation is somewhat disappointing it is hardly surprising in light of the
behaviour of the spin-1 series, where our earlier analysis showed a very slow convergence
of estimates towards the true values of the critical parameters [1, 9]. Although the order to
which the higher spin-S series are correct exceeds that of the spin-1 series, this is really
just a consequence of the definition of the expansion variableu. We would expect the
accuracy of estimates to depend not so much on the actual order of the series as much
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as on the maximal cut-off given bybmax. In essence, the accuracy is determined by the
number of distinct graphs, consisting of spins flipped from the ground state (irrespective of
the actual value of the spins), that one has summed over. One should therefore not expect
more accurate estimates from the higher spin-S series than those one could have obtained
by truncating the spin-1 series at an order determined by the associated value ofbmax.

One may hope to obtain improved estimates foruc by raising the relevant series to
the power 1/λ, where λ is the expected leading critical exponent, and look for simple
zeros and poles of the resulting series. This procedure of biasing works quite well for the
magnetization and susceptibility series (it obviously cannot be used for the specific heat
series). It is well known that the analysis of series exhibiting a logarithmic divergence,
as we expect of the specific heat series, is particularly difficult. A fairly simple way of
circumventing these problems is to study the derivative of the specific heat, d/duCv(u). The
series for this quantity should have a simple pole atuc, a situation much more amenable
to analysis by either differential approximants or even just ordinary Padé approximants.
This approach does indeed confirm the logarithmic divergence atuc, though the evidence
becomes rather circumstantial for higher values ofS. The estimates foruc derived in this
fashion are tabulated in table 4 and were obtained by averaging ordinary [N + K, N ] Pad́e
approximants (K = 0, ±1) with 2N + K + 15 not less than the order of the series. The
error quoted for these estimates again merely reflects the spread among the approximants.

Table 4. Biased estimates for the physical singularity.

S Magnetization Susceptibility Specific heat

3
2 0.737 74(2) 0.7372(2) 0.7379(5)
2 0.8293(2) 0.8288(2) 0.833(3)
5
2 0.8795(3) 0.881(3) 0.882(2)
3 0.9107(4) 0.914(1) 0.905(4)

It is often possible to find a transformation of variable which will map the non-physical
singularities outside the transformed physical disc. One such transformation is given by
u = x/(2 − x). Although the series in the transformed variable have radii of convergence
determined by the physical singularity, this transformation turns out to be of little use and
does not allow us to obtain better estimates for the critical parameters. This is probably
because there are still singularities close to the physical disc and because such singularity-
moving transformations may introduce long-period oscillations [10].

We have calculated the critical amplitudes using two different methods, both of
which are very simple and easy to implement. In the first method, we note that if
f (u) ∼ A(1−u/uc)

−λ, then it follows that(uc −u)f 1/λ|u=uc ∼ A1/λuc. So we simply form
the series forg(u) = (uc −u)f 1/λ and evaluate Padé approximants to this series atuc. The
result is justA1/λuc. This procedure works well for the magnetization and susceptibility
series (it obviously cannot be used to analyse the specific heat series). For the specific heat
series two different approaches have been used. In the first approach we use the ‘trick’
applied previously and look at the derivative of the specific heat series for which the above
method should work withλ = 1. In table 5 we have listed the estimates for the critical
amplitudes obtained in this fashion. As usual, estimates for any given value ofuc were
obtained by averaging over many higher-order approximants, and the error estimates in
table 5 reflect both the spread among the various approximants as well as the dependence
on uc. In the second approach we start fromf (u) ∼ A ln(1 − u/uc) and form the series
g(u) = exp(−f (u)) which has a singularity atuc with exponentA. One virtue of this
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approach is that no prior estimate ofuc is needed. However, the spread among estimates
from different approximants is very substantial although consistent with table 5. Biasing
the estimates atuc also confirms the value of the amplitude, although generally the spread
is larger than for the first approach. For the spin-3 susceptibility and specific heat series we
could not obtain reliable amplitude estimates since the spread tended to be larger than the
average value and the poor estimate ofuc leads to even greater errors.

Table 5. Estimates for the amplitudes at the physical singularity.

S Magnetization Susceptibility Specific heat

3
2 1.875(5) 0.019(3) 52(2)
2 2.57(2) 0.0088(5) 110(5)
5
2 3.33(3) 0.006(2) 190(10)
3 4.10(5) — —

In the second method, proposed by Liu and Fisher [11], one starts fromf (u) ∼
A(u)(1− u/uc)

−λ + B(u) and then forms the auxiliary functiong(u) = (1− u/uc)
λf (u) ∼

A(u) + B(u)(1 − u/uc)
λ. Thus the required amplitude is now thebackground term in

g(u), which can be obtained from inhomogeneous differential approximants [10]. This
method can also be used to study the specific heat series. One now starts fromf (u) ∼
A(u) ln(1−u/uc)+B(u) and then looks at the auxiliary functiong(u) = f (u)/ ln(1−u/uc).
As before, the amplitude can be obtained as the background term ing(u). This analysis
yields amplitude estimates consistent with those in table 5, but with larger error bars.

In table 6 we have listed our final estimates for the physical singularities and the
associated exponents and amplitudes. For the estimates of the position of the physical
singularities we have placed most weight on the biased analysis of the magnetization series.
In the spin-12 case,uc and the exponentsα′ andβ and the amplitudesAC andAM are known
exactly due to the calculation of the free energy by Onsager [12] and the magnetization by
Yang [13]. The susceptibility amplitudeAχ is known to very high precision [14]. The
spin-1 estimates are from [9].

Table 6. The physical singularities and associated exponents and amplitudes.

S uc β AM γ ′ Aχ α′ AC

1
2 3 − 2

√
2 1

8 1.138 789 7
4 0.584 850 0 5.406 58

1 0.554 065 3(5) 0.125 07(3) 1.2083(2) 1.750(1) 0.0617(1) 0.0005(10) 22.3(5)
3
2 0.737 75(15) 0.128(3) 1.875(15) 1.85(15) 0.019(5) 0.0(3) 52(4)
2 0.8293(3) 0.139(4) 2.57(4) — 0.009(1) — 110(10)
5
2 0.8795(5) 0.138(5) 3.33(6) — 0.006(2) — 190(20)
3 0.911(1) 0.132(2) 4.1(1) — — — —

3.2. Non-physical singularities

Except forS = 1
2, the series have a radius of covergence smaller thanuc due to singularities

in the complexu-plane closer to the origin than the physical critical point. Since all the
coefficients in the expansion are real, complex singularities always come in pairs. The
number of non-physical singularities appears to increase quite dramatically withS, thus
making it exceedingly hard to locate them accurately for largeS.
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Table 7. Non-physical singularitiesus and associated exponents of the spin-S series.

us |us |/uc β γ ′ α′

Spin-1
1 −0.598 550(5) 1.08 0.1248(3) 1.750(5) 0.005(10)
1 −0.301 939 5(5) ± 0.378 773 5(5)i 0.87 −0.1690(2) 1.1692(2) 1.1693(3)

Spin-3
2

3 0.63(1) ± 0.45(1)i 1.05 −1.8(5) 2.7(5) 2.4(6)
1 0.094 77(2) ± 0.641 17(5)i 0.88 −0.174(5) 1.185(5) 1.185(1)
2 −0.0654(5) ± 0.7113(4)i 0.97 −0.18(3) 1.21(2) 1.22(3)
1 −0.529 24(2) ± 0.337 97(2)i 0.85 −0.177(5) 1.184(5) 1.188(5)

Spin-2
2 −0.842(5) 1.02 0.130(4) 1.2(5) 0.3(4)
1 0.3767(2) ± 0.6401(1)i 0.90 −0.16(3) 1.19(1) 1.19(3)
2 0.302(6) ± 0.727(8) 0.95 — 1.3(4) 1.2(3)
4 0.215(15) ± 0.805(15)i 1.00 — — —
1 −0.225 61(2) ± 0.682 47(4)i 0.87 −0.16(2) 1.194(6) 1.192(6)
2 −0.394(5) ± 0.700(6)i 0.97 — 1.8(6) 1.6(4)
1 −0.648 90(4) ± 0.286 96(4) 0.86 −0.180(5) 1.197(6) 1.194(6)
3 −0.685(15) ± 0.485(15)i 1.01 — 2.3(5) 1.4(3)

Spin-5
2

1 0.5501(3) ± 0.5842(2)i 0.91 −0.4(1) 1.19(2) 1.19(4)
3 0.522(5) ± 0.645(10)i 0.94 −1.2(4)
1 0.0612(2) ± 0.7759(2)i 0.88 −0.2(1) 1.20(3) 1.19(2)
3 −0.03(1) ± 0.83(1)i 0.94 — — —
1 −0.4227(1) ± 0.6400(1)i 0.87 −0.20(5) 1.185(15) 1.21(3)
3 −0.575(5) ± 0.61(2)i 0.95 — — —
3 −0.665(15) ± 0.53(1)i 0.97 — — —
1 −0.7213(2) ± 0.245 95(15)i 0.87 −0.175(25) 1.20(2) 1.20(2)
4 −0.745(15) ± 0.39(2)i 0.96 — — —

Spin-3
−0.92(1) 1.01 — — —

1 0.6608(4) ± 0.5232(5)i 0.93 — 1.20(3) 1.20(3)
3 0.645(15) ± 0.595(15)i 0.96 −1.4(5) 2.0(5) 2.0(5)
1 0.2729(3) ± 0.7730(4)i 0.90 — 1.20(4) 1.19(4)
4 0.220(15) ± 0.840(15)i 0.95 — 1.6(4) 1.6(4)
1 −0.1686(1) ± 0.7902(1)i 0.89 −0.19(3) 1.20(2) 1.20(2)
2 −0.275(5) ± 0.825(5)i 0.95 — 1.2(3) 1.2(3)
1 −0.549 55(5) ± 0.583 51(3)i 0.88 −0.20(4) 1.196(6) 1.197(5)
2 −0.68(1) ± 0.54(1)i 0.95 — 1.1(4) 1.0(4)
1 −0.769 25(10) ± 0.214 30(5)i 0.88 −0.185(25) 1.205(15) 1.205(15)

In order to locate the non-physical singularities in a systematic fashion we used the
following procedure. We calculate all [L/N; M] inhomogeneous first-order differential
approximants with|N − M| 6 1 using all, or almost all, series terms for 106 L 6 16.
(We discard no more than the last 15–20 terms.) Each approximant yieldsM possible
singularities and associated exponents from theM zeros ofQ1 (many of these are, of
course, not actual singularities of the series but merely spurious zeros ofQ1). Next we
sort these ‘singularities’ into equivalence classes by the criterion that they lie at most a
distance 2−k apart. An equivalence class is accepted as a singularity if it contains more



Series expansions for theS > 1 Ising model 3813

Figure 1. The distribution of singularities in the complexu-plane. In all cases the circle has
radiusuc.

than Na approximants (Na can be adjusted but we typically use a value around2
3 of the

total number of approximants), and an estimate for the singularity and exponent is obtained
by averaging over the approximants (the spread among the approximants is also calculated).
This calculation is then repeated fork − 1, k − 2, . . . until a minimal value of roughly
five. To avoid outputting well converged singularities at every level, once an equivalence
class has been accepted, the approximants which are members of it are removed, and the
subsequent analysis is carried out on the remaining data only. This procedure is applied to
each series in turn producing tables of possible singularities. Next we look at these tables
in order to identify the true singularities.

In table 7 we have listed the non-physical singularities that we believe to have been
identified with some degree of certainty and accuracy. For higher spin values several of
these are marred by large error bounds and it is quite possible that we have not been able
to locate all non-physical singularities of the series, particularly forS = 5

2 and 3. First
we accepted any singularity which appeared in all the series at a reasonably early level,
say k > 10. These singularities are marked 1 in table 7 and all of them are undoubtedly
true singularities. Singularities which appear fork < 10 are a lot more tricky to deal with.
Generally we also expect that a singularity which appears fork = 8 or 9 (or higher) in
all series and for the majority of values ofL is a true singularity of the series (these are
marked 2 in table 7). However, we often find that some singularities appear fork = 8 or
higher in some series but at lower values ofk all the way down to 5 in other series, and
it is not easy to determine which ones are true singularities and which ones are not. Those
marked 3 appear in all series and for all values ofL while those marked 4 appear in some
series for allL but not neccesarily for allL in other series.

The distribution of singularities is shown in figure 1. A remarkable feature of the
singularity distribution is its regularity. AsS increases the complex singularities move
closer to the perimeter of the physical disc and the distance between the various singularities
become more uniform. In the limitS → ∞ it thus seems likely that the singularities will
converge onto the unit circle.

We find the very old conjecture by Fox and Guttmann [2] that the number of singularities
inside the physical disc equalsqS − 2, whereq is the coordination number of the lattice
(q = 4 for the square lattice), to be invalid forS > 1. Recently, Matveev and Shrock [6]
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studied the distribution of zeros of the partition function of the square lattice Ising model
for S = 1, 3

2, and 2. They conjectured that all divergences of the magnetization occur
at endpoints of arcs of zeros protruding into the ferromagnetic phase and that there are
4[S2] − 2 such arcs forS > 1, where [x] denotes the integer part ofx. Our analysis seems
to confirm these conjectures for the magnetization series up toS = 2. In particular, we
find evidence of singularities close to the endpoints located by Matveev and Shrock [6] for
these spin values.

The estimate forγ ′ at the singularityu− = −1 of the spin-12 susceptibility and
the estimates for the spin-1 series are based on the low-temperature series we published
elsewhere [1, 9]. The estimate forγ ′ of the spin-12 case is consistent with the exact value
γ ′ = 3

2 also reported by Matveev and Shrock [15].
From table 7 we observe that the exponents at the singularities in the complex plane

which are well converged (those marked 1) appear to be independent ofS. In the case of
integer spin it appears that the exponents associated with the singularity on the negative
u-axis equal those atuc. While the exponents are independent ofS, note that they do
depend on the lattice structure [15], so a much weaker version of universality holds at the
non-physical singularities. In all these cases we observe that the Rushbrooke inequality
[16],

α′ + 2β + γ ′ > 2 (12)

is satisfied, and it does indeed seem quite possible that the exponents satisfy the equality in
equation (12). At the remaining singularities the errors on the exponent estimates are too
large to make any such assertion.

E-mail or www retrieval of series

The low-temperature series for the spin-S Ising model can be obtained via e-
mail by sending a request to iwan@maths.mu.oz.au or via the worldwide web on
http://www.maths.mu.oz.au/˜iwan/ by following the instructions.
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